Intention Recognition and Object Recommendation System using Deep Auto-encoder Based Affordance Model
نویسندگان
چکیده
Intention recognition is an important task for human-agent interactions (HAI) since it can make the robot respond adequately to the human’s intention. For the robot to understand the world in terms of its own actions, the robot requires the definition of adequate knowledge representations. Affordance is the concept used to represent the relation between an agent and its environment. A robot can exploit this type of knowledge to infer implicit human intentions. In this paper, we propose a system based on action-object affordances modeled using deep structure that can recognize the user’s intention and recommend the corresponding objects related to that intention. The network is learnt by the robot after considering the user’s attention for specific objects. To notice the user’s attention, the gaze information is obtained using Tobii 1750 eye-tracker in experiments. The experimental results show the successful recognition and recommendation performance of the proposed system.
منابع مشابه
The Diagnosis of Brucellosis in Rafsanjan City Using Deep Auto-Encoder Neural Networks
Introduction: Brucellosis is considered as one of the most important common infectious diseases between humans and animals. Considering the endemic nature of brucellosis and the existence of numerous reports of human and animal cases of brucellosis in Iran, the incidence of human brucellosis in Rafsanjan city was determined in the last 3 years (2016–2018). The main objective of this study was t...
متن کاملThe Diagnosis of Brucellosis in Rafsanjan City Using Deep Auto-Encoder Neural Networks
Introduction: Brucellosis is considered as one of the most important common infectious diseases between humans and animals. Considering the endemic nature of brucellosis and the existence of numerous reports of human and animal cases of brucellosis in Iran, the incidence of human brucellosis in Rafsanjan city was determined in the last 3 years (2016–2018). The main objective of this study was t...
متن کاملRecognition of Sar Target Based on Multilayer Auto-encoder and Snn
Automatic target recognition (ATR) of synthetic aperture radar (SAR) image is investigated. One feature extraction algorithm of SAR image based on multilayer auto-encoder is proposed. The method makes use of a probabilistic neural network, restricted Boltzmann machine (RBM), modeling probability distribution of environment. Through the formation of more expressive multilayer neural network, the...
متن کاملUrban Vegetation Recognition Based on the Decision Level Fusion of Hyperspectral and Lidar Data
Introduction: Information about vegetation cover and their health has always been interesting to ecologists due to its importance in terms of habitat, energy production and other important characteristics of plants on the earth planet. Nowadays, developments in remote sensing technologies caused more remotely sensed data accessible to researchers. The combination of these data improves the obje...
متن کاملClustering and Unsupervised Anomaly Detection with L2 Normalized Deep Auto-Encoder Representations
Clustering is essential to many tasks in pattern recognition and computer vision. With the advent of deep learning, there is an increasing interest in learning deep unsupervised representations for clustering analysis. Many works on this domain rely on variants of auto-encoders and use the encoder outputs as representations/features for clustering. In this paper, we show that an l2 normalizatio...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2013